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S3.1 
The double ratios design rule consists of setting bn+2 = bn+1

2/2/bn.  
 
b2 = 0.5,  b3 = 0.125, b4 = 0.0156 
 

The zeros of  f(s) are obtained by the Matlab command  roots([ b4 b3 b2 
b1 b0 ]) as  s1/2 = -2 ± j 2,  s3/4 = -2 ± j 2 . 
 
S3.2 
(a) The polynomial coefficients are multiplied by 10 with respect to P4.1, 

while the zeros are unaltered.  
(b) b2 = 500,  b3 = 1250, b4 = 1562 
 s1/2 = -0.2 ± j 0.2,  s3/4 = -0.2 ± j 0.2  (rad/s) 
 
S3.3 
From Eq. 3.19,  KP = J/2/τTA  = 5 kgm2/s = 5 Nm/(rad/s). The characteristic 
polynomial is f(s) = s2 + s/τTA + 1/2/τTA

2 = s2 + 100s + 5000. 
The closed loop poles are s1/2 = -50 ± j 50     (rad/s). 
 
S3.4 
The closed-loop transfer function of the system is obtained in Eq. 3.18: 
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The step response is obtained by entering 
 
>> j = 0.1; tta = 0.01; kp  = j/2/tta;  
>> num = [ kp]; den = [j*tta  j   kp]; 
>> step(num,den) 
 
The overshoot is approximately 4.3%, and the rise time is τR ≈  32 ms. 
 
S3.5 
From Eq. 3.27,  KP = J/2/τTA = 5  and  KI = B/2/τTA = 0.5. The characteristic 
polynomial is given in Eq. 3.26. The closed-loop poles are calculated as 
polynomial zeros:  
 
s1/2 = -50 ± j 50     (rad/s). 
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S3.6 
The closed-loop transfer function of the system is obtained in Eq. 3.26:  

( )
TAI

I
SS BssBK

KsW
τ2++

=  . 

The step response is obtained by entering 
 
>> b = 0.01; j = 0.1; tta = 0.01; ki  = b/2/tta;  
>> num = [ ki]; den = [b*tta  b   ki]; 
>> step(num,den) 
 

The overshoot is approximately 4.3%, and the rise time is τR ≈  32 ms. 
 
S3.7 
From Eq. 3.32,  KP = J/2/τTA = 5  and  KI = J/8/τTA

2 = 125. 
The characteristic polynomial is given in Eq. 3.31. The closed-loop poles 
are calculated as polynomial zeros:  
 
s1/2 = -25 ± j 43,   s3 = -50  (rad/s).  
 
S3.8 
From Eq. 3.33, the open-loop transfer function WS(s) is obtained as  
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It has two poles at the origin, one pole at p1 = -1/τTA = -100 rad/s, and a 
single zero at z1 = -25 rad/s. The Bode plot is obtained by entering the fol-
lowing Matlab commands:  
 
>> tta = 0.01;  
>> num = [4*tta  1];  
>> den = [8*tta*tta*tta  8*tta*tta  0  0 ] 
>> bode(num,den)  
 

Condition WS(jω)| = 1 is obtained for ωx = 50 rad/s. Notice in the plot 
that ωx

2 = p1z1. Compare the plot to Fig. 3.13.  
 
S3.9 
The closed-loop transfer function of the system is obtained in Eq. 3.34:  
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The step response is obtained by entering 
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>> tta = 0.01;  num = [ 4*tta 1];  
>> den = [8*tta*tta*tta  8*tta*tta  4*tta 1];  
>> step(num,den) 
 

The overshoot is approximately 43.5%, and the rise time is τR ≈  21 ms. 
 
 
 
S4.1 
The step response obtained with W(s) is obtained by entering the following 
statements: 
>> numc = [1];  % Define the numerator of continuous-time  t.f.  
>> denc = [1 1];  % Denominator  
>> step(numc,denc,'r');  % Obtain the step response as a red color trace  
>> hold on;   % Hold the plot for further comparison  

Conversion of the s-domain transfer function into the z-domain is ob-
tained by 
 
>> sysd = c2d(tf(numc,denc),1,'zoh');  
>> [numd, dend] = tfdata(sysd,'v');  
 

The step response of the discrete-time system is obtained by 
 
>> dstep(numd,dend,'b');  
>> axis([0 10 0 1.5]);  
 

Note in the figure that the sample train of the discrete-time response co-
incides with samples of the step response obtained from the continuous-
time system.  
 
S4.2 
The desired results are obtained by entering the following Matlab state-
ments: 
 
>> numc = [1 1];  denc = [1  1  1];  
>> step(numc,denc,'r');  hold on;  
>> sysd = c2d(tf(numc,denc),1,'zoh');  
>> [numd, dend] = tfdata(sysd,'v');  
>> dstep(numd,dend,'b');  
>> axis([0 10 0 1.5]);  
 
S4.3 
The sequence of Matlab commands to be repeated is 
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>>  T = 0.1;                                         % Enter the sampling time 
>>  numc = [1];  denc = [1  0.5  1];  
>>  close all;  step(numc,denc);  
>>  sysd = c2d(tf(numc,denc),T,'zoh');  figure;  
>>  [numd, dend] = tfdata(sysd,'v');  dstep(numd,dend,'b'); 
 

With T > TMAX ≈ 3 s,  the step response obtained from the discrete-time 
system loses its resemblance to the original. Consider the poles s1/2 = -0.25 
± j 0.96 of W(s) and their undamped natural frequency of ωn = 1 rad/s. 
Then, it is concluded that the output comprises the frequency components 
at fn = 0.159 Hz. According to the sampling theorem, the sampling fre-
quency fS = 1/T must be at least two times larger than the maximum fre-
quency contained within the spectrum of the original signal (fS > 2 fn). In 
other words, the sampling process is proper for band-limited input signals. 
The bandwidth limit fMAX = fS/2 is also known as the Shannon frequency. 
With fn = 0.159 Hz, the sampling frequency must be in excess to 0.318 Hz, 
corresponding to TMIN ≈ 3 s.  
 
S4.4 
The desired response is obtained by entering the following Matlab state-
ments: 
 
>> p = 0.2027;  i = 0.03512;   
>> num = [2*i   0   0];  den = [1  (p+i-2)   (1+i)  -p]; 
>> dstep(num,den);  
 

The resulting figure shows the optimized step response without an over-
shoot. With reduction of the proportional gain, the step response obtains an 
overshoot of  34%: 
 
>> p = 0.1;  i = 0.03512;   den = [1  (p+i-2)   (1+i)  -p];  dstep(num,den);  
 

A reduction in the integral gain does not produce an overshoot, but it in-
creases the rise time and reduces the bandwidth:  
 
>> p = 0.2027;  i = 0.01512;  num = [2*i   0   0];   
>> den = [1  (p+i-2)   (1+i)  -p];  dstep(num,den);  
 

With reference to Eq. 2.38, the characteristic polynomial of the system in 
Fig. 2.2 can be expressed as f(s) = s2 + 2ξωns + ωn

2, where the proportional 
gain affects the damping coefficient while the integral gain determines the 
undamped natural frequency. In this light, a reduction in the proportional 
gain decreases the damping and produces an overshoot. On the other hand, 
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a decrease in the integral gain improves the damping and reduces the natu-
ral frequency, diminishing, at the same time, the closed-loop bandwidth 
and prolonging the rise time.  
 
S4.5 
The desired results are obtained by entering the following Matlab state-
ments: 
 
>> p = 0.1;  i = 0.03;  numd = [2*i   0   0];  dend = [1  (p+i-2)   (1+i)  -p]; 
>> dstep(numd,dend);  
 

The figure obtained with dstep presents the closed-loop step response of 
the discrete-time system. In order to obtain the continuous-time-domain 
equivalent, it is necessary to enter 
 
>> sysc = d2c(tf(numd,dend,0.001),'zoh') 
>> step(sysc);  
>> [numc,denc] = tfdata(sysc,'v');  
 

In response, Matlab prints the s-domain transfer function WSS(s) with 
two zeros and three poles, and plots the related step response. A compari-
son of the two waveforms, shows that the overshoot and character of the 
response correspond.  
 
S4.6 
The closed-loop poles and zeros in the z- and s-planes are obtained as fol-
lows: 
 
>> roots(numd)   % Zeros of the pulse transfer function  
>> roots(dend)   % Poles of the pulse transfer function  
>> roots(numc)   % Zeros of the s-domain transfer function  
>> roots(denc)   % Poles of the s-domain transfer function  
 

The z-domain and s-domain poles and zeros are mapped with z = 
exp(sT), where T stands for the sampling time T = 0.001 s. The mapping is 
obtained with the following commands:  
 
>> exp(0.001.*roots(numc)) %  z-domain equivalent of numc zeros 
>> exp(0.001.*roots(denc)) %  z-domain equivalent of denc zeros 
>> log(roots(numd))/0.001  % s-domain equivalent of numd zeros (err.)  
>> log(roots(dend))/0.001  % s-domain equivalent of dend zeros 
 

Note that the closed-loop poles in the s-domain correspond to the 
equivalent poles obtained by log(roots(dend))/0.001. On the other hand, 
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there is no such correspondence between zeros. With the numerator numd 
zeros z1 = z2 = 0, equivalent s-domain zeros are infinite. Note that  the op-
tion zoh within the Matlab command d2c (discrete to continuous) provides 
the s-domain equivalent W(s), with samples of its time response y(kT) co-
inciding with the output samples y(k) of the original discrete-time system. In 
order to obtain the s-domain transfer function with matched poles and ze-
ros, it is necessary to use the function d2c with the option matched.  
 
S4.7.  
The step responses are compared with 
 
>>  numd = [1 -0.001];  dend = [1 0.5 0.8]; 
>> dstep(numd,dend,'r'); hold on; step(d2c(tf(numd,dend,1),'zoh'),'b'),  
 
and with 
 
>> close all 
>> dstep(numd,dend,'r'); hold on; step(d2c(tf(numd,dend,1),'matched'),'b') 
 

In both cases, the step response obtained from the discrete-time system is 
given in red, while the continuous-time domain equivalent is shown in 
blue. Zooming in on the individual samples shows that the responses corre-
spond with zoh option and disagree with matched option.  
 

The closed-loop poles and zeros are compared with  
 
>> [numc,denc] = tfdata( d2c(tf(numd,dend,1),'zoh'), 'v') 
>> roots(dend), exp(roots(denc)*1) 
>> roots(numd), exp(roots(numc)*1) 
 
and with  
 
>> [numc,denc] = tfdata( d2c(tf(numd,dend,1),'matched'), 'v') 
>> roots(dend), exp(roots(denc)*1) 
>> roots(numd), exp(roots(numc)*1) 
 

In both cases, the closed-loop poles are mapped according to z = 
exp(sT). With the zoh option, the closed-loop zeros disagree. With the op-
tion matched, the continuous- and discrete-time zeros are related with z = 
exp(sT). 
 


