
OG4DPP S. N. Vukosavic boban@ieee.org vukosavic.etf.bg.ac.yu

t

S7.1
With the PID controller having its proportional and derivative actions in the
feedback path, the steady-state error is given in Eq. 7.2:

() ()
i
pRz

z
z

z

*

1

1lim =⎟
⎠
⎞

⎜
⎝
⎛ Δ

−
=∞Δ

→
θθ .

With the proportional gain relocated into the direct path, the steady-state
error is obtained in Eq. 7.5:

() () 0
2
21lim1lim *

11
=⎟
⎠
⎞

⎜
⎝
⎛ −

=⎟
⎠
⎞

⎜
⎝
⎛ Δ

−
=∞Δ

→→
R

i
d

z
zz

z
z

zz
θθ .

S7.2
The Matlab command file P7_2cmd initializes the parameters, runs the two
model files, and plots the resulting traces. The output error obtained with
the proportional gain in the direct path is plotted in red; it peaks to 0.04 rad
and decays to zero in 20–30 sampling periods. The blue trace corresponds
to the output error obtained with KP gain located in the feedback path. The
steady-state output error is approximately 0.1 rad. The second figure pro-
duced by P7_2cmd gives the output position. With the KP gain in the direct
path (red), the model overshoots the target.

S7.3
The overshoot in the step response is associated with conjugate complex
poles, resulting in damped oscillations. However, the presence of real zeros
may contribute to an overshoot, even in cases when the closed-loop poles
are real. The sample transfer function WSS(s) = (s+1)/(s+4)/(s+2.5) =
(s+1)/(s2 + 6.5s + 10) has two real poles and one zero, and it provides the
step response with an overshoot:

>> num = [1 1]
>> den = [0.1 0.65 1]
>> step(num,den)

Similarly, the PID position controller with KP gain in the direct path adds
the closed- loop zero z = p/(p+i) to the closed-loop system transfer function
(Eq. 7.3), thus resulting in an overshoot.

S7.4

OG4DPP S. N. Vukosavic boban@ieee.org vukosavic.etf.bg.ac.yu

u

The required modifications of the Simulink model are entered in P7_4.mdl.
The Matlab command file initializes the parameters, invokes the simula-
tion, and plots the results. The ramp profile can be adjusted by the parame-
ter del. Use the following commands and observe the overshoot in the out-
put position:

>> del = 0; p7_4cmd
>> del = 0.01; p7_4cmd
............
>> del = 0.07; p7_4cmd

S7.5
With ff = KP/2, the tracking error is reduced to zero.

S7.6
The reference time and data marks are entered in vectors stim and sdat:

>> stim = [0 0.05 0.1 0.15 0.2 0.25 0.3]
>> sdat = [0 0.002 0.006 0.011 0.014 0.016 0.017]

In order to obtain the time resolution of 1 ms, another vector is gener-
ated:

>> stim1 = [0:300]/1000;

Linear interpolation is performed by entering the following command:

>> sdat1 = interp1(stim,sdat,stim1,'linear')

The resulting trajectory is compared to the original by plotting the wave-
forms:

>> stairs(stim,sdat); hold on; stairs(stim1,sdat1,'r')

The first and second derivatives are plotted by entering

>> figure; plot(diff(sdat1)); figure; plot(diff(diff(sdat1)))

With linear interpolation, the first derivative changes in a stepwise man-
ner, while the second derivative contains impulses.

S7.7

OG4DPP S. N. Vukosavic boban@ieee.org vukosavic.etf.bg.ac.yu

v

The Matlab command file P7_7cmd.m initializes the simulation, invokes
the model file, and plots the traces. Linear interpolation results in a signifi-
cant reduction of the driving torque pulses and gives a smooth change of
the output position.

S7.8
The Matlab command file P7_8cmd.m initializes the simulation, provides
for linear and cubic spline interpolation, invokes the model file, and plots
the traces. Compared with the traces obtained with linear interpolation, the
cubic spline interpolation provides significant reduction in torque pulsa-
tions.

S7.9
The desired traces are obtained with

>> figure; plot(diff(sdat1));
>> figure; plot(diff(diff(sdat1)));
>> figure; plot(diff(diff(diff(sdat1))));

The third derivative changes in a stepwise manner.

S8.1
The resonant and antiresonant frequencies and their damping are calculated
as

()

Hz5.112
s

rad707

Hz15.159
s

rad1000

===

==
+

=

J
K

JJ
JJK

K
z

K
p

ω

ω

()

0071.0
4

01.0
4

2

2

==

=
+

=

JK
K

JJK
JJK

K

V
z

K

V
p

ζ

ζ

S8.2
The desired transfer function is found from Eq. 8.4:

OG4DPP S. N. Vukosavic boban@ieee.org vukosavic.etf.bg.ac.yu

w

()
2

2

2
1

1

2
1

s
K
Js

K
K

s
K
J

s
K
K

Js
sW

KK

V

KK

V

P

++

++
=

The output speed transient response is obtained by entering the follow-
ing sequence of commands at the Matlab prompt:

>> j = 0.001; kk = 500; kv = 0.01;
>> num = [j/kk kv/kk 1];
>> den = [j*j/kk 2*j*kv/kk 2*j 0];
>> impulse(num,den,0.3)

An increase in the KV parameter contributes to the oscillation damping.
Note that the traces obtained from Matlab exhibit the effects caused by an
extremely low damping of the conjugate complex pole and a finite internal
sample time used within Matlab for a discrete approximation to the con-
tinuous system. In order to improve the precision, the internal step time can
be forced to a lower value by entering

>> impulse(num,den,0:0.000001:0.3)

S8.3
In accordance with Eq. 8.5, the resonant frequency is calculated as fTR =
600 Hz. The traces obtained with optimized gains are generated by

>> clear all
>> p8_3cmd

The speed and torque responses are unstable. The speed controller feeds
the torsional oscillations back into the system and amplifies their ampli-
tude. In order to reach stability, it is necessary to reduce the feedback gains.
The Matlab command line

>> KP = KP/2; KI=KI/4; p8_3cmd

provides the speed and torque responses with reduced gains. In order to
reach stability, the gains have to be reduced again:

>> KP = KP/2; KI=KI/4; p8_cmd,

reaching KP = KPOPT/4 and KI = KIOPT/16. Some oscillations are noted in
the speed and torque traces, yet the response is considered acceptable.

OG4DPP S. N. Vukosavic boban@ieee.org vukosavic.etf.bg.ac.yu

x

S8.4
The rise time of the output speed is found to be τR ≈ 12T = 3.6 ms. The
closed-loop bandwidth estimate is fBW = 0.3/0.0036s = 83.3 Hz. The ratio
fTR/fBW is found as 7.2, in accordance with the conclusions given in Section
9.2, stating that the resonant phenomena can be neglected in cases where
the ratio fTR/fBW exceeds 7.

S8.5.
The discrete-time speed-controlled system results in the characteristic
polynomial of the third order. Therefore, the impact of the proportional and
integral gains on the closed-loop bandwidth and damping is not obvious.
On the other hand, the s-domain simplified representation of the speed-
controlled system with the PI controller, given in Fig. 2.2 and Eq. 2.38, re-
lates the integral gain to the undamped natural frequency of the closed-loop
poles, and their damping coefficient to the gain KP:

()

n

PI
n

nn
IP

J
BK

J
K

ss
J

Ks
J

BKssf

ω
ξω

ωξω

2
,

2 222

+
==⇒

++=+
+

+=
.

The closed-loop bandwidth ωBW is proportional to the natural frequency
ωn. Therefore, in cases when the closed-loop bandwidth has to be altered
while keeping the damping factor ξ and the response character unaltered,
the gains are to be changed as KI ~ ωBW

2 and KP ~ ωBW (namely, KI/KP ~
ωBW).

S8.6
The conjugate complex zeros within the open-loop transfer functions do
not contribute to oscillations, even in cases when the relevant damping is
extremely low. The transfer function

() 2

2
2

2

2 01.0
01.01

21

121
11

ss
ss

s

ss

Js
sW

Js
z

z

zz

z

RR +
++

=
+

++
=

ω
ζ
ωω

ζ

and the relevant step response are obtained by entering

>> num = [1 0.01 1]; den = [0.01 1 0];
>> step(num,den)

OG4DPP S. N. Vukosavic boban@ieee.org vukosavic.etf.bg.ac.yu

y

S8.7
The problem is solved by entering the following sequence of commands:

>> x = normrnd(0,1,1000,1); % Providing the noise signal
>> xs = abs(fft(x)); % The spectrum of the input to the filter
>> plot(log(xs(1:500))); % Verify the uniform distribution
>> numc = [1 0.001 1]; % Notch filter zeros
>> denc = [1 1 1]; % Notch filter poles
>> sysc = tf(numc,denc); % Continuous-time system
>> sysd = c2d(sysc,1); % Discrete domain equivalent
>> [numd,dend] = tfdata(sysd,'v'); % Numerator and denominator of d.t. t.f.
>> y = filter(numd,dend,x); % The output of the filter
>> ys = abs(fft(y)); plot(log(ys(1:500))) % The output spectrum

S8.8
The notch-filter zeros are designed to cancel the poles of the mechanical
resonator. Therefore, their frequency and damping must correspond to the
values obtained from Eq. 8.5. Hence, the notch-filter poles and zeros in
continuous time are defined as ωNF = ωp, ξP

NF
 = 0.2, ξZ

NF = ξp. The filter de-
sign is contained within the Matlab command file P8_8cmd.m. The transfer
function of discrete-time implementation is given as

()
21

2
54

2
3

KzKz
KzKzKzWNF +−

+−
= .

The difference equation of the filter is

154131211 −+−+ +−+−= nnnnnn xKxKxKyKyKy .

The filter coefficients are obtained as

.9792.0,9506.1,9812.0,9608.0,951.1 54321 ===== KKKKK

S8.9
The problem is solved by using the following Matlab commands:

>> numd = [1 2 3 2 1]; dend = [1 0 0 0 0];
>> x = [1:20];
>> x = x-x; % Define the input x as x(k) = 0, except for x(5) = 1
>> x(5) = 1;
>> y = filter(numd,dend,x);
>> stairs(y); axis([0 20 -1 4]);

