S3.1
The double ratios design rule consists of setting b,., = b,+,/2/b,.

b2=0.5, 63 =0.125, ¥4 =0.0156

The zeros of £s) are obtained by the Matlab command roots([ b, b; b,
bblas sp=-2+/2, sy, =-2+j2.

S3.2

(a) The polynomial coefficients are multiplied by 10 with respect to P4.1,
while the zeros are unaltered.

(b) 862=500, b3 =1250, b4 =1562
S, =-02%70.2, 8,=-02+;0.2 (rad/s)

S3.3

From Eq. 3.19, K,= J2/7;, =5 kgm?/s =5 Nm/(rad/s). The characteristic
polynomial is £s) = & + §/ 7, + 1/2/7,> = & + 100s + 5000.

The closed loop poles are s,, =-50+ 750 (rad/s).

S3.4
The closed-loop transfer function of the system is obtained in Eq. 3.18:

K
Wg(s)= P :
=(9) Jr,, 8" +Js+ K,

The step response is obtained by entering

>>j=0.1; tta=0.01; kp =j/2/tta;
>>num = [ kp]; den = [j*tta j kp];
>> step(num,den)

The overshoot is approximately 4.3%, and the rise time is 7, = 32 ms.

S3.5

From Eq. 3.27, K,=J2/t;4=5 and K,= B/2/7;,=0.5. The characteristic
polynomial is given in Eq. 3.26. The closed-loop poles are calculated as
polynomial zeros:

S =-50+ 750 (rad/s).
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S3.6
The closed-loop transfer function of the system is obtained in Eq. 3.26:

K
Wg(s)= ! :
(9) K, +sB+s’Br,,

The step response is obtained by entering

>>b =0.01;j=0.1; tta = 0.01; ki = b/2/tta;
>> num = [ ki]; den = [b*tta b ki];
>> step(num,den)

The overshoot is approximately 4.3%, and the rise time is 7, ~ 32 ms.

S3.7

From Eq. 3.32, K,=J2/7;,=5 and K,= J8/1;=125.

The characteristic polynomial is given in Eq. 3.31. The closed-loop poles
are calculated as polynomial zeros:

Sy, =-25+ 743, s§=-50 (rad/s).

S3.8
From Eq. 3.33, the open-loop transfer function W(s) is obtained as
1 1 1+4z7,S

We " (S): " 2 e,
8 (TTAS) 1+7.,8

It has two poles at the origin, one pole at p, = -1/7,, = -100 rad/s, and a
single zero at z = -25 rad/s. The Bode plot is obtained by entering the fol-
lowing Matlab commands:

>> tta = 0.01;

>>num = [4*tta 1];

>> den = [8*tta*tta*tta 8*tta*tta O 0]
>> bode(num,den)

Condition Wyjw)| = 1 is obtained for @, = 50 rad/s. Notice in the plot
that w,> = p,z. Compare the plot to Fig. 3.13.

S3.9
The closed-loop transfer function of the system is obtained in Eq. 3.34:
Wscg)t (S)_ 1+ 4T-|-AS

- 2 Q2 330
1+ 47,5+ 871, +87,S
The step response is obtained by entering

i
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>> tta = 0.01; num = [ 4*tta 1];
>> den = [8*tta*tta*tta 8*tta*tta 4*tta 1J;
>> step(num,den)

The overshoot is approximately 43.5%, and the rise time is 7z = 21 ms.

S4.1
The step response obtained with WAs) is obtained by entering the following
statements:

>> numc = [1]; % Define the numerator of continuous-time t.f.
>>denc =[11]; % Denominator

>> step(numc,denc,'r); % Obtain the step response as a red color trace
>> hold on; % Hold the plot for further comparison

Conversion of the s-domain transfer function into the z-domain is ob-
tained by

>> sysd = c2d(tf(humc,denc),1,'zoh");
>> [numd, dend] = tfdata(sysd,'v");

The step response of the discrete-time system is obtained by

>> dstep(numd,dend,'b");
>> axis([0 10 0 1.5]);

Note in the figure that the sample train of the discrete-time response co-
incides with samples of the step response obtained from the continuous-
time system.

S4.2
The desired results are obtained by entering the following Matlab state-
ments:

>>numc =[11]; denc=[1 1 1];

>> step(numc,denc,'r); hold on;

>> sysd = c2d(tf(humc,denc),1,'zoh");
>> [numd, dend] = tfdata(sysd,'v");
>> dstep(numd,dend,'b");

>> axis([0 10 0 1.5));

S4.3
The sequence of Matlab commands to be repeated is
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>> T=0.1; % Enter the sampling time
>> numc = [1]; denc=[1 0.5 1];

>> close all; step(numc,denc);

>> sysd = c2d(tf(numc,denc),T,'zoh’"); figure;

>> [numd, dend] = tfdata(sysd,'v'); dstep(numd,dend,'b");

With 7> T,,,x = 3 s, the step response obtained from the discrete-time
system loses its resemblance to the original. Consider the poles s,, = -0.25
+ j0.96 of W(s) and their undamped natural frequency of @, = 1 rad/s.
Then, it is concluded that the output comprises the frequency components
at £, = 0.159 Hz. According to the sampling theorem, the sampling fre-
quency f; = 1/T must be at least two times larger than the maximum fre-
quency contained within the spectrum of the original signal (5> 2 £,). In
other words, the sampling process is proper for band-limited input signals.
The bandwidth limit 7,,,x = f42 is also known as the Shannon frequency.
With £, = 0.159 Hz, the sampling frequency must be in excess to 0.318 Hz,
corresponding to 7;,v~ 3 s.

S4.4
The desired response is obtained by entering the following Matlab state-
ments:

>>p =0.2027; i=0.03512;
>>num=[2% O O], den=[1 (p+i-2) (1+) -p];
>> dstep(num,den);

The resulting figure shows the optimized step response without an over-
shoot. With reduction of the proportional gain, the step response obtains an
overshoot of 34%:

>>p=0.1; i=0.03512; den=[1 (p+i-2) (1+i) -p]; dstep(num,den);

A reduction in the integral gain does not produce an overshoot, but it in-
creases the rise time and reduces the bandwidth:

>>p=0.2027; i=0.01512; num=[2* 0 O]
>>den=[1 (p+i-2) (1+i) -p]; dstep(num,den);

With reference to Eq. 2.38, the characteristic polynomial of the system in
Fig. 2.2 can be expressed as f(s) = s* + 2Ew,s + w,’, where the proportional
gain affects the damping coefficient while the integral gain determines the
undamped natural frequency. In this light, a reduction in the proportional
gain decreases the damping and produces an overshoot. On the other hand,

k
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a decrease in the integral gain improves the damping and reduces the natu-
ral frequency, diminishing, at the same time, the closed-loop bandwidth
and prolonging the rise time.

S4.5
The desired results are obtained by entering the following Matlab state-
ments:

>>p=0.1; i=0.03; numd=[2% 0 O0]; dend=[1 (p+i-2) (1+i) -p];
>> dstep(numd,dend);

The figure obtained with dsfep presents the closed-loop step response of
the discrete-time system. In order to obtain the continuous-time-domain
equivalent, it is necessary to enter

>> sysc = d2c(tf(humd,dend,0.001),'zoh")
>> step(sysc);
>> [numc,denc] = tfdata(sysc,'v");

In response, Matlab prints the s-domain transfer function Wyy(s) with
two zeros and three poles, and plots the related step response. A compari-
son of the two waveforms, shows that the overshoot and character of the
response correspond.

S4.6
The closed-loop poles and zeros in the z- and s-planes are obtained as fol-
lows:

>> roots(numd) % Zeros of the pulse transfer function
>> roots(dend) % Poles of the pulse transfer function
>> roots(numc) % Zeros of the s-domain transfer function
>> roots(denc) % Poles of the s-domain transfer function

The zdomain and s-domain poles and zeros are mapped with z =
exp(s7), where 7 stands for the sampling time 7= 0.001 s. The mapping is
obtained with the following commands:

>> exp(0.001.*roots(numc)) % z-domain equivalent of numc zeros

>> exp(0.001.*roots(denc)) % z-domain equivalent of denc zeros

>> |og(roots(numd))/0.001 % s-domain equivalent of numd zeros (err.)
>> |og(roots(dend))/0.001 % s-domain equivalent of dend zeros

Note that the closed-loop poles in the s-domain correspond to the
equivalent poles obtained by log(roots(dend))/0.001. On the other hand,
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there is no such correspondence between zeros. With the numerator numd
zeros z, = z, = 0, equivalent s-domain zeros are infinite. Note that the op-
tion zoh within the Matlab command dZc (discrete to continuous) provides
the s-domain equivalent W(s), with samples of its time response y(&7) co-
inciding with the output samples y;y of the original discrete-time system. In
order to obtain the s-domain transfer function with matched poles and ze-
10s, it is necessary to use the function dZc with the option matched.

S4.7.
The step responses are compared with

>> numd =[1 -0.001]; dend =[10.50.8];
>> dstep(numd,dend,'r"); hold on; step(d2c(tf(humd,dend,1),'zoh"),'b"),

and with

>> close all
>> dstep(numd,dend,'r"); hold on; step(d2c(tf(humd,dend,1),'matched"),'b")

In both cases, the step response obtained from the discrete-time system is
given in red, while the continuous-time domain equivalent is shown in
blue. Zooming in on the individual samples shows that the responses corre-
spond with zoA option and disagree with matched option.

The closed-loop poles and zeros are compared with

>> [numc,denc] = tfdata( d2c(tf(humd,dend,1),'zoh"), 'v')
>> roots(dend), exp(roots(denc)*1)
>> roots(numd), exp(roots(numc)*1)

and with

>> [numc,denc] = tfdata( d2c(tf(humd,dend,1),'matched"), 'v")
>> roots(dend), exp(roots(denc)*1)
>> roots(numd), exp(roots(numc)*1)

In both cases, the closed-loop poles are mapped according to z =
exp(s7). With the zoh option, the closed-loop zeros disagree. With the op-
tion matched, the continuous- and discrete-time zeros are related with z =

exp(sT).
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