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S5.1 
The transfer function WP(s) = 1/s/(Js+B) = numc(s)/denc(s) is defined by 
 
>> numc = [1]; 
>> denc = [ 0.01   0.01  0]; 
>> sysc = tf(numc,denc) 
 

The pulse transfer function WP(z) is obtained as 
 
>> Ts = 0.01;  
>> sysd = c2d(sysc,Ts, 'zoh') 
>> tf(sysd) 
>> [numd,dend] = tfdata(sysd, 'v') 
 
 
S5.2 
The closed-loop system transfer function is obtained as 
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The step response is obtained by entering the following commands:  
 
>> kd = 2; kp = 1; j = 1;  
>> num = [1] 
>> den = [1 kd/kp   j/kp] 
>> step(num,den) 
 

From the plot, the rise time is estimated as τR ≈ 3.2 s, resulting in a 
closed-loop bandwidth of 0.3/3.2 = 0.0937 Hz.  
 
S5.3 
The overshoot of 50% is obtained with KD = 0.42 Nm/(rad/s). With KD = 0, 
the damping is zero. The amplitude of oscillations in the output position is 
constant.  
 
S5.4 
The transfer function WLS(s) = θ(s)/TL(s) is obtained in Eq. 5.16:  
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TL(t) = TLOAD h(t) = 5 h(t) Nm,  TL(s) = 5/s. Therefore,  
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The inverse Laplace transform θ(t) = L  -1 (θ(s)) is obtained as 
 
>> syms s t 
>> ilaplace(-5/(s*s+2*s+1)/s) 
   

In reply, Matlab provides the response 5*(t+1)*exp(-t)-5. Thereby, 
Δθ(∞) = - θ(∞) = 5 rad. The response of the output position to the step 
change in the load torque can also be derived by typing the following 
command sequence:  
 
>> num = [ -5]; 
>> den = [ 1   2   1   0]; 
>> impulse(num,den) 
 

In the resulting figure, the output position approaches -5 rad. In Eq. 5.18, 
the steady state error in the output position is obtained as:  
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resulting in θ(∞) = -5 rad.  
 
S5.5 
Under the given assumptions, KFB is expressed in [Nm], KFB in [1/rad], and 
KP and KI are without units. The optimized gains are given in Eq. 5.37 and 
calculated as  
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S5.6 
The closed-loop system transfer function numerator and denominator are 
entered as  
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>> p = 0.03512;  d = 0.2027;  
>> num = [p   p  0];  den = [1  (p+d-2)   (1+p)   -d]; 
 

The step response of the output position is obtained by 
 
>> dstep(num,den) 
 

The rise time is approximately eight sampling periods. The speed is 
obtained as the first derivative of the output position:  
 
>> stairs(diff(dstep(num,den))) 
 

In the absence of the load torque, the driving torque is proportional to 
the second derivative of the output:  
 
>> stairs(diff(diff(dstep(num,den)))) 
 
 
 
S5.7 
According to Eq. 5.40,  

( ) rad2.447
2

1 =
Δ

=Δ=
J

T
fp MAX

MAX

θ
θω   . 

 
 
 
 
S6.1 
The desired transfer function is obtained in Eq. 6.12 as  
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The load step response is obtained by entering the following Matlab com-
mands:  
 
>> d = 0.2; p = 0.05; i = 0.005; T = 0.001; j = 0.01; 
>> num = -T*T/2/j * [1 0 -1 0 ]; 
>> den = [ 1   (p+d+i-3)   (3+i-d)   (-1-p-d)   d]; 
>> dstep(num,den) 
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Following the step change in the load torque, the output position sags, 
and then returns to the reference position within 30–35 sampling intervals. 
In Chapter 6, the PD position controller gave the steady-state output posi-
tion error proportional to the load torque.  
 
S6.2 
The closed-loop system transfer function is found in Eq. 6.10 as 
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The closed-loop system transfer function numerator and denominator are 
entered as  
 
>> d = 0.2; p = 0.05; i = 0.005; T = 0.001; j = 0.01; 
>> num = [i   i  0   0 ]; 
>> den = [ 1   (p+d+i-3)   (3+i-d)   (-1-p-d)   d]; 
 

The step response of the output position is obtained by 
 
>> dstep(num,den) 
 

The rise time is approximately 12 sampling periods. Compared with the 
rise time obtained in P5.6/S5.6 with the PD controller, the PID controller 
rise time is increased by 50%. The speed is obtained as the first derivative 
of the output position:  
 
>> stairs(diff(dstep(num,den))) 
 

In the absence of the load torque, the driving torque is proportional to 
the second derivative of the output:  
 
>> stairs(diff(diff(dstep(num,den)))) 
 
S6.3 
The closed-loop zeros in the z-domain are obtained with roots(num):  
 
z1 = -1, z2 = 0, z3 = 0 . 
 

The closed-loop poles in the z-domain are are obtained with roots(den): 
 
p1 = 0.8351, p2 = 0.7634 +j 0.2058, p3 = 0.7634 -j 0.2058,0, p4 = 0.3831  . 
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The closed-loop poles in the s-domain are found as 
 
>> log(roots(den))/0.001 
 
p1 = -180, p2 = -234 +j 263, p3 = -234 -j 263, p4 = -959  . 

 
The closed-loop zeros in the s-domain are found as:  
 
>> log(roots(num))/0.001 
 
z1 = + j 3141,  z2 = s2 =-∞  . 
 
 
S6.4 
The closed-loop system transfer function numerator and denominator are 
entered as  
 
>> d = 0.21609; p = 0.0516627; i = 0.0052195; T = 0.001; j = 0.01; 
>> num = [i   i  0   0 ]; 
>> den = [ 1   (p+d+i-3)   (3+i-d)   (-1-p-d)   d]; 
 

The step response of the output position is obtained by  
 
>> dstep(num,den) 
 

The rise time is approximately 12 sampling periods. The closed-loop 
poles are obtained from roots(den), and they are p1 ≈ p2 ≈ p3 ≈ p4 ≈ 0.6818. 
 
S6.5 
The polynomial fPID(z) has four zeros and only three adjustable gains: p, d, 
and i.  
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Therefore, the four poles cannot be independently set. When three of 
them are set, the fourth pole is calculated from Eq. 6.15:  
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S6.6 
The closed-loop bandwidth is calculated as 
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The ratio between the bandwidth frequencies obtained with n = 3 and 

n = 4 is 

( )
( ) 172.1

12

12
4
3

4
1

3
1

=

−

−
=

=
=

n
n

BW

BW

ω
ω

 

 
The ratio fBW

PD/ fBW
PID, obtained in Fig. 6.4, is larger, due to the presence 

of the closed-loop zeros in the transfer function WSS(s).  
 
S6.7 
With tx = 0.015, the driving torque reaches the system limit TMAX, both in 
acceleration and in braking. The output position reaches the setpoint with-
out an overshoot. For tx = 0.014, an overshoot is observed in the position 
waveform. With tx = 0.013, the output position exhibits sustained oscilla-
tions. A further increase in the reference slope dθ*/dt = 0.02/tx brings the 
system into instability.  
 
S6.8 
The analytical considerations are included in Section 7.6.1. The maximum 
input step is obtained in Eq. 6.27 as:  
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